منابع مشابه
Applying machine learning techniques to ecological data
This thesis is about modelling carbon flux in forests based on meterological variables using modern machine learning techniques. The motivation is to better understand the carbon uptake process from trees and find the driving factors of it, using totally automated techniques. Data from two British forests were used, (Griffin and Harwood) but finally results were obtained only with Harwood becau...
متن کاملMachine Learning Techniques to Predict Software Defect
Machine learning techniques have been dominating in the last two decades. The recently published comprehensive state-of-the-art review (Mohanty et al., 2010) justifies this issue. The ability of software quality models to accurately identify critical faulty components allows for the application of focused verification activities ranging from manual inspection to automated formal analysis method...
متن کاملApplications of Machine Learning Techniques to Systems
Perceptrons is a simple neural network that works as an alternative to the commonly used two-bit counters branch history table (BHT) branch predictor. Perceptrons achieves increased accuracy than traditional BHT branch predictors because they can make use of longer branch histories, given the same hardware budget. Although having very similar organization to BHT branch predictors, Perceptrons’ ...
متن کاملApplying Machine Learning Techniques to ASP Solving
Having in mind the task of improving the solving methods for Answer Set Programming (ASP), there are two usual ways to reach this goal: (i) extending state-of-the-art techniques and ASP solvers, or (ii) designing a new ASP solver from scratch. An alternative to these trends is to build on top of state-of-the-art solvers, and to apply machine learning techniques for choosing automatically the “b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Astronomy & Astrophysics
سال: 2017
ISSN: 0004-6361,1432-0746
DOI: 10.1051/0004-6361/201628937